月別アーカイブ: 2013年4月

線積分とは3

線積分のその3ではベクトル場{bf B}(x,y,z)の線積分を考えたいと思います。

ベクトル場の線積分として、よくある形は次のようなベクトル場と微小な経路との内積の線積分です。
int_C {bf B}cdot d{bf s}
内積の積分ですので、線積分の値はスカラー値になります。

もう1つ、たまにあるのが外積の線積分です。
int_C {bf B}times d{bf s}
外積と言うベクトル量の積分ですので、線積分の値はベクトル値になります。

実際に問題演習を行うことで、これらの具体的なイメージをつかむことができると思います。

最後に補足です。これまで積分する微少な長さとして、小文字のsを用いてd{bf s}と書いてきましたが、大文字のSになると今度は微小な面積を表すようになります。またd{bf s}の他にd{bf l}d{bf r}d{bf x}などの表記も用いられます。

線積分とは2

線積分とは、ある経路に沿って積分を行うことでした。
int_C f(x,y)ds

今回はこのdsについて、もう少し詳しく説明したいと思います。積分とは微小なものの足し合わせなのですが、この微小なものを表しているのがdsです。線積分の場合は、経路を細かく分けて行ったときの1区間がdsに対応しています。このように考えると、dsというのは向きを持ったベクトル量であることが分かります。なので本来d{bf s}=(dx,dy)と書ける量なのです。線積分中のdsはこのd{bf s}の大きさを表しており、
ds=|d{bf s}|=sqrt{dx^2+dy^2}
と書くことができます。

線積分とは、経路を区切って行った時に、ある点でのfの値掛けるds足すことの次の点でのfの値掛けるds…とやっていったものです。これはなんら特別なことではなく、普通の積分の時とやっていることは同じなのです。これまで学んできた積分は、x軸に沿った線積分と言い換えることができます。線積分と言うと、もっと一般のグニャグニャ曲がった経路に沿った積分も含まれています。

今回はスカラー値fに関する線積分を説明してきましたが、「線積分とは3」ではベクトル量の線積分について考えていきたいと思います。

線積分とは

ここでは線積分についてのイメージを話します。線積分とは”線”に沿って”積分”することです。積分というのは、高校数学のでもやったように、”微小なものの足し合わせ”です。この足し合わせを線に沿って行うのが、今回話す線積分です。

例えば点P_1P_2を考え、それらをつなぐ経路をなんでも良いので考えます。このような経路をよく”C“と表します。これはContourの略です。(Pathではありません。)Contourとは、等高線や輪郭といった意味を持ち、閉じた曲線に対して使われることが多いです。閉じた曲線というのは、始点と終点が一致しているような曲線のことです。一般の閉じていない曲線に対しても、Cを用いて表される慣習があります。

この経路Cに沿っての積分が、線積分です。線積分の値はどのような経路を辿るかに依って異なります。異なる経路CC'C''を考えた時、それぞれの曲線に沿っての積分の値が異なるということです。

具体例を考えます。今xy平面を考え、この平面上で関数F(x,y)=2x+yという関数を考えましょう。この関数を原点Oからある点Pまでの経路に沿って線積分することを考えます。ここでは具体的に点Pをxy平面上の(1,1)という点にとります。

経路として、次の2つの経路C_1C_2を考えます。
C_1 : 最初に原点からx軸に沿って点(1,0)まで進み、その後y方向に沿って点(1,1)まで進む経路。
C_2 : 最初に原点からy軸に沿って点(0,1)まで進み、その後x方向に沿って点(1,1)まで進む経路。

経路C_1に沿っての線積分は次のように書かれます。
int_{C_1}f(x,y)ds
今回の場合はx軸に沿って移動している間はds=dx、その後y方向に進んでいる間はds=dyとなるのですが、細かく書いているとややこしくなるので、象徴的に”ds“と書きます。この積分を経路に沿って具体的に書き下すと以下のようになります。
int_{C_1}f(x,y)ds=int^1_0 2x dx+int^1_0 (2+y)dy
ここでx方向に移動している間はy=0、y方向に移動している間はx=1となっていることに注意が必要です。さらに計算を進めると
int_{C_1}f(x,y)ds=int^1_0 2x dx+int^1_0 (2+y)dy=[x^2]^1_0+[2y+frac{1}{2}y^2]^1_0=frac{7}{2}
となります。これが経路C_1に沿っての線積分の結果です。

C_2に沿っての線積分も同様に考えられます。
int_{C_2}f(x,y)ds=int^1_0 y dy+int^1_0 (2x+1)dx=[frac{1}{2}y^2]^1_0+[x^2+x]^1_0=frac{5}{2}
これが経路C_2に沿っての線積分の結果です。このように始点と終点が一致していても、通る経路によって線積分の結果が異なってきます。なので線積分を書き表す際には、きちんとどのような経路における線積分かを指定する必要があります。

rot(回転)とは

ここではrot(ローテーション、回転)について説明します。rotはベクトル場に対して作用して次のように定義されます。
rot{bf A}({bf x})=(frac{partial A_z}{partial y}-frac{partial A_y}{partial z},~frac{partial A_x}{partial z}-frac{partial A_z}{partial x},~frac{partial A_y}{partial x}-frac{partial A_x}{partial y})

ここでとりあえず分かるのは、rot{bf A}のx成分にはyとzが、y成分にはzとxが、z成分にはxとyが入っていることが分かります。これらがどのような組み合わせで出てくるかはとても覚えづらそうなのですが、これについては「ナブラ記号について」という動画で分かりやすい覚え方を説明します。

rotはベクトルに対してベクトルを返すものなのですが、これのイメージは次の通りです。rot(ローテーション、回転)はその名の通りベクトル場の回転具合を表します。例えば水の流れを表すベクトル場を考え、そこに浮かぶボールを考えましょう。ボールはベクトル場の向きに従って流れて行きますが、この時ボールには回転が加わるかもしれません。あるところで流れが強く、あるところで弱くといった状況ではボールがくるくる回りながら流れます。このボールの回り具合を表すのが、ベクトル場のローテーション、rot{bf A}({bf x})です。

回転、渦などいったものもベクトルで表現することができます。渦の乗っている平面に垂直な方向がそのベクトルの方向で、渦の強さがベクトルの大きさに対応します。

最後に補足なのですが、rot{bf A}({bf x})curl{bf A}({bf x})などとも書かれたりします。電磁気学をまとめたMaxwellはこの表記を用いて書いていたそうです。

電磁気学とは

ここでは電磁気学というものがどのような学問なのかということを、大雑把に説明したいと思います。

“電”は電場{bf E}などを表します。電場は電荷qがあるとその周りに生じます。”磁”は磁場{bf B}などを表します。磁場は電流iがあるとその周りに生じます。

電流というのは動いている電荷のことです。つまり電場は止まっている電荷から、磁場は動いている電荷から生成されます。電荷が止まっているか動いているかは観測者の見方に依って異なります。あるいは電荷と言う存在を、違う見方で見ている、ということもできます。従って、電場、磁場というものも、見かけは異なっていても本質的には同じものなのではないかと考えることができます。これは実はアインシュタインが特殊相対性理論で言っていることです。アインシュタインの特殊相対性理論の論文の題は「動いている物体の電磁気学」でした。

その内容はここまでに述べた通りです。電荷に対して静止した観測者から見ればもちろん電荷は止まって見え、動いている観測者から見れば電荷は電流に見えます。同じように、静止した観測者からは電場に見えていたものが、動いている観測者から見れば磁場に見えることがある、ということです。電場・磁場というのは単に見え方の違いであって、本質的には同じものである、ということをアインシュタインは論文の中で言っています。特殊相対性理論は、物体の動きだけではなくて電磁気学を含んだものになっており、電磁気学の話をする際には特殊相対性理論にもよく触れられます。特殊相対性理論から、電場と磁場は見た目が違うだけであって本質的には同じものなのだということが明らかになり、そのため電磁気学では電場と磁場が一緒に扱われます。

写像とは

ここでは写像について話をしようと思います。写像は英語ではmapと呼ばれます。よくfという記号を用いて
f:A \rightarrow B
などと書かれます。簡単に行ってしまうと、高校までに習った関数f(x)を一般化したものが写像です。すなわち”関数”というものよりも広いものになります。高校までに習った関数f(x)はとる値がスカラー値でした。しかしながら”写像”はより広い場合、例えば、ベクトルが与えられればベクトルを返すような写像、というものを考えることができます。例を考えましょう。

あるベクトルの集合(ベクトル空間)Vからベクトル空間Wへの写像fを考えましょう。
f:V \rightarrow W
この写像を用いるとVの元であるベクトル{bf v}からWの元であるベクトルf({bf v})={bf w}を与えることができます。

ベクトルではなく、ある集合を与えて集合を返す、という写像も考えることができます。例えば、Uというたくさんの集合の集まり、集合の集合からVという集合の集合への写像を考えましょう。
f:U \rightarrow V
この写像を用いるとUの元である集合AからVの元である集合f(A)=Bを与えることができます。これは具体的にはどのようなものなのかというと、例えばここで出てきた集合Aをクラスの男子の集合とします。そして彼らの家の集合をBとすると、この写像は”人”と”家”を対応させる住所録のようなものになります。これが集合を与えて集合を返す写像の例です。

線形代数学とは

今回は線形代数学について話をします。線形代数学はベクトルと行列の学問です。このことを知らなかった私は、最初に線形代数を学んだ頃、何をやっているのか分かりにくく、戸惑いました。線形代数学は高校の数Cの延長だと思ってしまえば、少しは理解し易くなるかと思います。

まず、”線形代数学”という言葉がどのようにベクトル、行列などと関係しているか説明したいと思います。

代数学というのは、文字式等を用いて数の代わりに様々なものを扱う学問です(※)。また”線形”という言葉は英語では”linear”という言葉に対応します。これは、”直線的な”や”1次の”などといった意味があります。1次というは2つ以上の代数を掛けることがない、ということを表しています。例えばx^2=xcdot xxという代数の2次の量です。こういった2次以上のものが出てこない、一次の代数を扱う学問が線形代数学です。

具体的に線形代数の言葉と、ベクトルや行列の言葉がどのように対応しているかを見てみましょう。
線形代数では”元”という言葉を用います。これは集合の中のある要素xという意味なのですが、線形代数で出て来る場合、これはベクトルだと思ってもらってよいかと思います。また”写像”という言葉もよく使われます。これは高校までに扱ってきた関数fのようなものですが、線形代数で出て来る場合、これは行列だと思ってもらってよいかと思います。
x leftrightarrow~~ベクトル{bf x}
写像f leftrightarrow~~行列A

写像というのは、各元に対してある値を返すものです。行列も、あるベクトルに掛けられることで新たなベクトルを生成します。この点から、行列も写像、関数と同じような働きをすることが分かります。
f(x) leftrightarrow~~ A{bf x}

ここまでざっくりと線形代数のイメージを説明してきましたが、このようにベクトル・行列のイメージを持っておくと、理解がしやすいかと思います。

(※)ただし現代的な代数学は必ずしも「数の代わり」ではありません。演算(実数ならば+-×÷)が定義された集合を扱う数学が、現代的な意味での「代数学」です。